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INTRODUCTION

DNA sequencing is more and more accessible
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INTRODUCTION

DNA sequencing is more and more accessible
but still presents many errors
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HOW DO WE CORRECT THESE ERRORS?



CORRECTING ERRORS

3 types of errors
- insertion: GCA -> GCTA
- deletion: GCA -> GA
- substitution: GCA -> GTA
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CORRECTING ERRORS

several reads from the same sequence
3 types of errors TTGAC_TCAAGGGCCA_TCATG
- insertion: GCA -> GCTA I JRIGATR ECUATTEATE
] T GACATTACGGGCCAGTAATG
> CEUSHRE @8 =5 (6 TCGACA_CA GGGTAAA AATT
- substitution: GCA -> GTA o ___

T GACATCA GGGCCAATAATG
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ALIGNING TWO SEQUENCES

Computing an alignement score
+a by match
—f3 by substitution
—6 by insertion/deletion
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HOW CAN WE GO FASTER?



ACCELERATING SEQUENCE ALIGNMENT

= Go gle Scholar accelerating sequence alignment
* rices [Eomom oo e
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ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

AGATTACATT

-4 > 0 > 4 > o 4 >
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ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

-4 > 0 > 4 > o 4 >

AGATTACATT

Vectorizing operations:
SSE / AVX instruction set

Hardware acceleration:
using GPU / FPGA
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MY CONTRIBUTION




CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
- very long sequences (20000 bases)

- errors can be agglomerated
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CONSTRAINTS OF THE ALGORITHM

: . Desired properties:
Constraints we have to deal with: PTOp

- subquadratic time complexity
- very long sequences (20000 bases)

- low memory footprint
- errors can be agglomerated J .

o - easy parallelization
but sequences are very similar

- reduced instruction set
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OVERVIEW OF THE ALGORITHM

ATCGGGCAATTAAAAGGATCTGAAGCGAAGACACCGTACCAGACGTAGCGAGCCCTATTT

ATCGGAGCAATAAAAGGATCCGAGCGAGAGACCACCGTACAGGACTTAGGGAGCCCTATTT

take advantage of the similarity between sequences
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OVERVIEW OF THE ALGORITHM

ATCGGGCAATTAAAAGGATCTGAAGCGAAGACACCGTACCAGACGTAGCGAGCCCTATTT

ATCGGAGCAATAAAAGGATCCGAGCGAGAGACCACCGTACAGGACTTAGGGAGCCCTATTT

1. mark the words of size Kk common to both sequences
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OVERVIEW OF THE ALGORITHM
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OVERVIEW OF THE ALGORITHM

ATCGG_GCAATTAAAAGGATCTGAAGCGA_AGA_CACCGTACCA_GACGTAGCGAGCCCTATTT

FECEE TEeE teeerer e e eeee eee teeee e e eee tee PErrr e
ATCGGAGCAA_TAAAAGGATCCGA_GCGAGAGACCACCGTA_CAGGACTTAGGGAGCCCTATTT

1. mark the words of size Kk common to both sequences
2. align sequences between the anchor points

3. merge the results
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ALIGNING SUBSEQUENCES

AGATTACATT

Apply existing optimizations:
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ALIGNING SUBSEQUENCES

AGATTACATT

Apply existing optimizations:
- restricting the matrix

- vectorizing operations
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VECTORIZING OPERATIONS
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VECTORIZING OPERATIONS

S@j = max {S'—Lj — 0, Si,j—l -9, Si_17j_1 + mi7j} v

i (6% If U; = 1}]‘
with mij; = )
— [ otherwise
1. sum (match, substitution, indel)
2. compare

3. blend (keep the maximum)

%
%
%
e
o

e 4o de 4 de 4 de 4 dle

9/16



PROBABILISTIC MODELING

mismatch
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PROBABILISTIC MODELING
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PROBABILISTIC MODELING

mismatch

with k= 16 and p = 0.07,

0 5 E (# steps to reach @) ~ 31
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RESULTS




RUN TIME MEASUREMENT
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RUN TIME COMPARISON

sequence size
14000-16000 16000-18000 18000-20000 20000-22000

average run time (in ms)

ksw2 430 531 645 776
coal 10.2 8.0 7.2 10.8

acceleration X 42 X 74 x 90 x 72
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SCORE COMPARISON

sequence size
14000-16000 16000-18000 18000-20000 20000-22000

average score

ksw2 18967 21955 24543 26878
coal 18304 21359 23931 26071

relative gap 3.5% 2.7% 2.5% 3.0%
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NEXT STEPS



NEXT STEPS

Improve scores:
- refine the choice of anchor points

- try different alignment methods
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NEXT STEPS

Push performances further:

Improve scores: - parallelize subalignments
- refine the choice of anchor points - improve hashing methods
- try different alignment methods - port on other architectures

(processing-in-memory)
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PROCESSING-IN-MEMORY

processors directly integrated into the DRAM
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PROCESSING-IN-MEMORY

minimize data access time,
processors directly integrated into the DRAM ~ speed up data intensive calculations

many applications in genomics
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PROCESSING-IN-MEMORY

minimize data access time,
processors directly integrated into the DRAM ~ speed up data intensive calculations

many applications in genomics

starting in 2022:
- CIFRE PhD

- Inria GenoPIM project
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CONCLUSION



CONCLUSION

(+) better performances (x 90)
(+) low memory footprint

(+) adaptable with different
alignment methods

(-) lower scores (-3%)
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