
A NEW ALGORITHM FOR THE ALIGNMENT OF LONG GENOMIC
SEQUENCES
INTERNSHIP SUPERVISED BY DOMINIQUE LAVENIER, GENSCALE TEAM

Igor MARTAYAN
September 20, 2021

http://lavenier.net/homepage/
https://team.inria.fr/genscale/

INTRODUCTION

DNA sequencing is more and more accessible

but still presents many errors

ATCGGGCAAT TAAAAGGATC
TGAAGCGAAG ACACCGTACC
AGACGTAGCG AGCCCTATTT
ATCGGAGCAA TAAAAGGATC
CGAAGCGAGA GACCACCGTA
CAGGACGTAG GGAGCCCTAT

1/16

INTRODUCTION

DNA sequencing is more and more accessible
but still presents many errors

ATCGGGCAAT TAAAAGGATC
TGAAGCGAAG ACACCGTACC
AGACGTAGCG AGCCCTATTT
ATCGGAGCAA TAAAAGGATC
CGAAGCGAGA GACCACCGTA
CAGGACGTAG GGAGCCCTAT

1/16

HOW DO WE CORRECT THESE ERRORS?

1/16

CORRECTING ERRORS

3 types of errors
• insertion: GCA -> GCTA
• deletion: GCA -> GA
• substitution: GCA -> GTA

several reads from the same sequence
TTGAC_TCAAGGGCCA_TCATG
T _ACAT_A _GGCTAATTATG
T GACATTACGGGCCAGTAATG
TCGACA_CA GGGTAAA_AATT

T GACATCA GGGCCAATAATG

2/16

CORRECTING ERRORS

3 types of errors
• insertion: GCA -> GCTA
• deletion: GCA -> GA
• substitution: GCA -> GTA

several reads from the same sequence
TTGAC_TCAAGGGCCA_TCATG
T _ACAT_A _GGCTAATTATG
T GACATTACGGGCCAGTAATG
TCGACA_CA GGGTAAA_AATT

T GACATCA GGGCCAATAATG

2/16

ALIGNING TWO SEQUENCES

Computing an alignement score
+α by match
−β by substitution
−δ by insertion/deletion

Needleman—Wunsch algorithm
Compute score matrix with dynamic
programming, O(nm) complexity

A G C C T

A

T

C

T

0 -1 -2 -3 -4 -5

-1 1 0 -1 -2 -3

-2 0 0 -1 -2 -1

-3 -1 -1 1 0 -1

-4 -2 0 0 0 1

AGCCT
| ||
AT_CT

3/16

ALIGNING TWO SEQUENCES

Computing an alignement score
+α by match
−β by substitution
−δ by insertion/deletion

Needleman—Wunsch algorithm
Compute score matrix with dynamic
programming, O(nm) complexity

A G C C T

A

T

C

T

0 -1 -2 -3 -4 -5

-1 1 0 -1 -2 -3

-2 0 0 -1 -2 -1

-3 -1 -1 1 0 -1

-4 -2 0 0 0 1

AGCCT
| ||
AT_CT

3/16

ALIGNING TWO SEQUENCES

Computing an alignement score
+α by match
−β by substitution
−δ by insertion/deletion

Needleman—Wunsch algorithm
Compute score matrix with dynamic
programming, O(nm) complexity

A G C C T

A

T

C

T

0 -1 -2 -3 -4 -5

-1 1 0 -1 -2 -3

-2 0 0 -1 -2 -1

-3 -1 -1 1 0 -1

-4 -2 0 0 0 1

AGCCT
| ||
AT_CT

3/16

ALIGNING TWO SEQUENCES

Computing an alignement score
+α by match
−β by substitution
−δ by insertion/deletion

Needleman—Wunsch algorithm
Compute score matrix with dynamic
programming, O(nm) complexity

A G C C T

A

T

C

T

0 -1 -2 -3 -4 -5

-1 1 0 -1 -2 -3

-2 0 0 -1 -2 -1

-3 -1 -1 1 0 -1

-4 -2 0 0 0 1

AGCCT
| ||
AT_CT

3/16

HOW CAN WE GO FASTER?

3/16

ACCELERATING SEQUENCE ALIGNMENT

4/16

ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

Vectorizing operations:
SSE / AVX instruction set

Hardware acceleration:
using GPU / FPGA

4/16

ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

Vectorizing operations:
SSE / AVX instruction set

Hardware acceleration:
using GPU / FPGA

4/16

ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

Vectorizing operations:
SSE / AVX instruction set

Hardware acceleration:
using GPU / FPGA

4/16

MY CONTRIBUTION

CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint
• easy parallelization
• reduced instruction set

5/16

CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint
• easy parallelization
• reduced instruction set

5/16

CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint

• easy parallelization
• reduced instruction set

5/16

CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint
• easy parallelization

• reduced instruction set

5/16

CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint
• easy parallelization
• reduced instruction set

5/16

OVERVIEW OF THE ALGORITHM

ATCGGGCAATTAAAAGGATCTGAAGCGAAGACACCGTACCAGACGTAGCGAGCCCTATTT

||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||

ATCGGAGCAATAAAAGGATCCGAGCGAGAGACCACCGTACAGGACTTAGGGAGCCCTATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points
3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGGGCAATTAAAAGGATCTGAAGCGAAGACACCGTACCAGACGTAGCGAGCCCTATTT

||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||

ATCGGAGCAATAAAAGGATCCGAGCGAGAGACCACCGTACAGGACTTAGGGAGCCCTATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences

2. align sequences between the anchor points
3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGG GCAAT TAAAAGG ATCTGAAGCGA AGA CACCGTA CCA GACGTAGC GAGCCCT ATTT

||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||

ATCGGAGCAA TAAAAGG ATCCGA GCGAGAGAC CACCGTA CAGGACTTAGG GAGCCCT ATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences

2. align sequences between the anchor points
3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGG GCAAT TAAAAGG ATCTGAAGCGA AGA CACCGTA CCA GACGTAGC GAGCCCT ATTT

||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||

ATCGGAGCAA TAAAAGG ATCCGA GCGAGAGAC CACCGTA CAGGACTTAGG GAGCCCT ATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points

3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGG_GCAAT TAAAAGG ATCTGAAGCGA_AGA_ CACCGTA CCA_GACGTAGC GAGCCCT ATTT
||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||
ATCGGAGCAA_ TAAAAGG ATCCGA_GCGAGAGAC CACCGTA _CAGGACTTAGG GAGCCCT ATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points

3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGG_GCAAT TAAAAGG ATCTGAAGCGA_AGA_ CACCGTA CCA_GACGTAGC GAGCCCT ATTT
||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||
ATCGGAGCAA_ TAAAAGG ATCCGA_GCGAGAGAC CACCGTA _CAGGACTTAGG GAGCCCT ATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points
3. merge the results

6/16

OVERVIEW OF THE ALGORITHM

ATCGG_GCAATTAAAAGGATCTGAAGCGA_AGA_CACCGTACCA_GACGTAGCGAGCCCTATTT
||||| |||| |||||||||| || |||| ||| ||||||| || ||| ||| |||||||||||
ATCGGAGCAA_TAAAAGGATCCGA_GCGAGAGACCACCGTA_CAGGACTTAGGGAGCCCTATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points
3. merge the results

6/16

FRAGMENTED ALIGNMENT

A T C G G G C A A T T A A A A G G A T C T G A A G C G A A G A C A C C G T A C C A G A C G T A G C G A G C C C T A T T T
A
T
C
G
G
A
G
C
A
A
T
A
A
A
A
G
G
A
T
C
C
G
A
A
G
C
G
A
G
A
G
A
C
C
A
C
C
G
T
A
C
A
G
G
A
C
G
T
A
G
G
G
A
G
C
C
C
T
A
T
T
T

7/16

ALIGNING SUBSEQUENCES

Apply existing optimizations:

• restricting the matrix
• vectorizing operations

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

8/16

ALIGNING SUBSEQUENCES

Apply existing optimizations:
• restricting the matrix

• vectorizing operations

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

8/16

ALIGNING SUBSEQUENCES

Apply existing optimizations:
• restricting the matrix
• vectorizing operations

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

8/16

VECTORIZING OPERATIONS

Si,j = max {Si−1,j − δ,Si,j−1 − δ,Si−1,j−1 + mi,j}

with mi,j =

α if ui = vj

−β otherwise

1. sum (match, substitution, indel)
2. compare
3. blend (keep the maximum)

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

9/16

VECTORIZING OPERATIONS

Si,j = max {Si−1,j − δ,Si,j−1 − δ,Si−1,j−1 + mi,j}

with mi,j =

α if ui = vj

−β otherwise

1. sum (match, substitution, indel)

2. compare
3. blend (keep the maximum)

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

9/16

VECTORIZING OPERATIONS

Si,j = max {Si−1,j − δ,Si,j−1 − δ,Si−1,j−1 + mi,j}

with mi,j =

α if ui = vj

−β otherwise

1. sum (match, substitution, indel)
2. compare

3. blend (keep the maximum)

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

9/16

VECTORIZING OPERATIONS

Si,j = max {Si−1,j − δ,Si,j−1 − δ,Si−1,j−1 + mi,j}

with mi,j =

α if ui = vj

−β otherwise

1. sum (match, substitution, indel)
2. compare
3. blend (keep the maximum)

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

9/16

PROBABILISTIC MODELING

Q0 Q1 Qk−1 Qkmatch match

mismatch

Xn =


p . . . p 0

1 − p (0)
...

. . . 0
(0) 1 − p 1


n

×


1
0
...
0


with k = 16 and p = 0.07,

E (# steps to reach Qk) ≈ 31

10/16

PROBABILISTIC MODELING

Q0 Q1 Qk−1 Qkmatch match

mismatch

Xn =


p . . . p 0

1 − p (0)
...

. . . 0
(0) 1 − p 1


n

×


1
0
...
0



with k = 16 and p = 0.07,

E (# steps to reach Qk) ≈ 31

10/16

PROBABILISTIC MODELING

Q0 Q1 Qk−1 Qkmatch match

mismatch

Xn =


p . . . p 0

1 − p (0)
...

. . . 0
(0) 1 − p 1


n

×


1
0
...
0


with k = 16 and p = 0.07,

E (# steps to reach Qk) ≈ 31

10/16

RESULTS

RUN TIME MEASUREMENT

0 5000 10000 15000 20000 25000 30000
sequence size

0

250

500

750

1000

1250

1500

1750

2000

ex
ec

ut
io

n
tim

e
(in

 m
s)

ksw2

11/16

RUN TIME MEASUREMENT

0 5000 10000 15000 20000 25000 30000
sequence size

0

250

500

750

1000

1250

1500

1750

2000

ex
ec

ut
io

n
tim

e
(in

 m
s)

ksw2
coal

11/16

RUN TIME COMPARISON

sequence size
14000–16000 16000–18000 18000–20000 20000–22000

average run time (in ms)

ksw2 430 531 645 776
coal 10.2 8.0 7.2 10.8

acceleration × 42 × 74 × 90 × 72

12/16

SCORE COMPARISON

sequence size
14000–16000 16000–18000 18000–20000 20000–22000

average score

ksw2 18967 21955 24543 26878
coal 18304 21359 23931 26071

relative gap 3.5% 2.7% 2.5% 3.0%

13/16

NEXT STEPS

NEXT STEPS

Improve scores:
• refine the choice of anchor points
• try different alignment methods

Push performances further:
• parallelize subalignments
• improve hashing methods
• port on other architectures
(processing-in-memory)

14/16

NEXT STEPS

Improve scores:
• refine the choice of anchor points
• try different alignment methods

Push performances further:
• parallelize subalignments
• improve hashing methods
• port on other architectures
(processing-in-memory)

14/16

PROCESSING-IN-MEMORY

processors directly integrated into the DRAM

minimize data access time,
speed up data intensive calculations

many applications in genomics

starting in 2022:
• CIFRE PhD
• Inria GenoPIM project

15/16

PROCESSING-IN-MEMORY

processors directly integrated into the DRAM
minimize data access time,
speed up data intensive calculations

many applications in genomics

starting in 2022:
• CIFRE PhD
• Inria GenoPIM project

15/16

PROCESSING-IN-MEMORY

processors directly integrated into the DRAM
minimize data access time,
speed up data intensive calculations

many applications in genomics

starting in 2022:
• CIFRE PhD
• Inria GenoPIM project

15/16

CONCLUSION

CONCLUSION

(+) better performances (× 90)
(+) low memory footprint
(+) adaptable with different

alignment methods
(-) lower scores (-3%)

https://github.com/imartayan/coal

16/16

https://github.com/imartayan/coal

CONCLUSION

(+) better performances (× 90)
(+) low memory footprint
(+) adaptable with different

alignment methods
(-) lower scores (-3%)

https://github.com/imartayan/coal

16/16

https://github.com/imartayan/coal

	My contribution
	Results
	Next steps
	Conclusion

