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INTRODUCTION

DNA sequencing is more and more accessible

but still presents many errors

ATCGGGCAAT TAAAAGGATC
TGAAGCGAAG ACACCGTACC
AGACGTAGCG AGCCCTATTT
ATCGGAGCAA TAAAAGGATC
CGAAGCGAGA GACCACCGTA
CAGGACGTAG GGAGCCCTAT
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HOW DO WE CORRECT THESE ERRORS?
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CORRECTING ERRORS

3 types of errors
• insertion: GCA -> GCTA
• deletion: GCA -> GA
• substitution: GCA -> GTA

several reads from the same sequence
TTGAC_TCAAGGGCCA_TCATG
T _ACAT_A _GGCTAATTATG
T GACATTACGGGCCAGTAATG
TCGACA_CA GGGTAAA_AATT
----------------------
T GACATCA GGGCCAATAATG
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ALIGNING TWO SEQUENCES

Computing an alignement score
+α by match
−β by substitution
−δ by insertion/deletion

Needleman—Wunsch algorithm
Compute score matrix with dynamic
programming, O(nm) complexity
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A

T
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-1 1 0 -1 -2 -3

-2 0 0 -1 -2 -1

-3 -1 -1 1 0 -1

-4 -2 0 0 0 1

AGCCT
| ||
AT_CT
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HOW CAN WE GO FASTER?
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ACCELERATING SEQUENCE ALIGNMENT
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ACCELERATING SEQUENCE ALIGNMENT

Restricting the score matrix:

A G A T T A C A T T

A
T
G
A
T
A
C
A
T

Vectorizing operations:
SSE / AVX instruction set

Hardware acceleration:
using GPU / FPGA
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MY CONTRIBUTION



CONSTRAINTS OF THE ALGORITHM

Constraints we have to deal with:
• very long sequences (20000 bases)
• errors can be agglomerated

but sequences are very similar

Desired properties:
• subquadratic time complexity
• low memory footprint
• easy parallelization
• reduced instruction set
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OVERVIEW OF THE ALGORITHM

ATCGGGCAATTAAAAGGATCTGAAGCGAAGACACCGTACCAGACGTAGCGAGCCCTATTT

||||| ||||

|||||||

||| || |||| |||

|||||||

|| ||| |||

|||||||

||||

ATCGGAGCAATAAAAGGATCCGAGCGAGAGACCACCGTACAGGACTTAGGGAGCCCTATTT

take advantage of the similarity between sequences

1. mark the words of size k common to both sequences
2. align sequences between the anchor points
3. merge the results
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OVERVIEW OF THE ALGORITHM
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FRAGMENTED ALIGNMENT
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ALIGNING SUBSEQUENCES

Apply existing optimizations:

• restricting the matrix
• vectorizing operations
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VECTORIZING OPERATIONS

Si,j = max {Si−1,j − δ,Si,j−1 − δ,Si−1,j−1 + mi,j}

with mi,j =

α if ui = vj

−β otherwise

1. sum (match, substitution, indel)
2. compare
3. blend (keep the maximum)

A G A T T A C A T T
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PROBABILISTIC MODELING

Q0 Q1 Qk−1 Qkmatch match

mismatch

Xn =


p . . . p 0

1 − p (0)
...

. . . 0
(0) 1 − p 1


n

×


1
0
...
0


with k = 16 and p = 0.07,

E (# steps to reach Qk) ≈ 31
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RESULTS



RUN TIME MEASUREMENT
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RUN TIME COMPARISON

sequence size
14000–16000 16000–18000 18000–20000 20000–22000

average run time (in ms)

ksw2 430 531 645 776
coal 10.2 8.0 7.2 10.8

acceleration × 42 × 74 × 90 × 72
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SCORE COMPARISON

sequence size
14000–16000 16000–18000 18000–20000 20000–22000

average score

ksw2 18967 21955 24543 26878
coal 18304 21359 23931 26071

relative gap 3.5% 2.7% 2.5% 3.0%
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NEXT STEPS



NEXT STEPS

Improve scores:
• refine the choice of anchor points
• try different alignment methods

Push performances further:
• parallelize subalignments
• improve hashing methods
• port on other architectures
(processing-in-memory)
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PROCESSING-IN-MEMORY

processors directly integrated into the DRAM

minimize data access time,
speed up data intensive calculations

many applications in genomics

starting in 2022:
• CIFRE PhD
• Inria GenoPIM project
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CONCLUSION



CONCLUSION

(+) better performances (× 90)
(+) low memory footprint
(+) adaptable with different

alignment methods
(-) lower scores (-3%)

https://github.com/imartayan/coal
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