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ROBUSTNESS OF A NETWORK

k-edge-connectivity
For every pair (s, t), there are at least k
edge-disjoint paths between sand ¢

example of 2-edge-connected graph
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ROBUSTNESS OF A NETWORK

k-edge-connectivity
For every pair (s, t), there are at least k
edge-disjoint paths between sand ¢

most of these problems are NP-hard
— approximation algorithms example of 2-edge-connected graph
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OUTLINE

- Graph augmentation: formulation, hardness, recent progress

- Matching augmentation: LP-based approximation algorithm
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GRAPH AUGMENTATION PROBLEM

Graph augmentation
Input G = (V, E), setof light edges FC F

Output Set of heavy edges E' C E of min cardinality s.t. (V, FU E') is
2-edge-connected

F can be a forest, a tree, a matching, a collection of paths...
Weighted version
Input G=(V,E), w: E~ RT, set of light edges FC F

Output Set of heavy edges F' C E of min weight s.t. (V, FUF') is
2-edge-connected
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EXAMPLE OF GRAPH AUGMENTATION
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CUT FORMULATION OF GRAPH AUGMENTATION

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges

(special case of max-flow min-cut)
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CUT FORMULATION OF GRAPH AUGMENTATION

Linear Program

k-edge-connectivity, cut formulation c€E\F
Every nontrivial cut has at least k edges Z 2.>2 VO CSCV
e€s(5)

z. € {0,1} VeeE

(special case of max-flow min-cut)

z. indicates whether e is selected
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CUT FORMULATION OF GRAPH AUGMENTATION

Relaxed Linear Program

k-edge-connectivity, cut formulation c€E\F
Every nontrivial cut has at least k edges Z 2.>2 VO CSCV
e€s(5)

0<zxz<1 VeekF

(special case of max-flow min-cut)

z. indicates whether e is selected
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HARDNESS OF APPROXIMATION

APX

NP optimization problems that have a
poly-time approximation algorithm with a
constant approximation ratio
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HARDNESS OF APPROXIMATION

APX

NP optimization problems that have a
poly-time approximation algorithm with a

Theorem (Kortsarz & al. 2004)
constant approximation ratio

Tree Augmentation is APX-hard

APX-hardness Je s.t. approximating TAP with
every problem in APX can be reduced to this ratio 1 4+ ¢ is NP-hard

problem with an approximation-preserving
poly-time reduction
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RECENT PROGRESS

Weighted Tree Augmentation

[Traub & al. 2021] 1 +1n2 4 ¢
(Relative Greedy)

8/17



RECENT PROGRESS

Weighted Tree Augmentation

[Traub & al. 2021] 1 +1n2 4 ¢
(Relative Greedy)

- [Traub & al. 2022] 1.5+ ¢
(Local Search)

8/17



RECENT PROGRESS

Weighted Tree Augmentation

[Traub & al. 2021] 1 +1In2 + ¢ Forest Augmentation
(Relative Greedy) [Grandoni & al. 2022] < 2
. [Traub & al. 2022] 1.5 + ¢ (Reduction to path augmentation)

(Local Search)
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APPROXIMATING MATCHING
AUGMENTATION




LP-BASED APPROXIMATION ALGORITHM

[Bamas, Drygala, Svensson, 2022] A Simple LP-Based Approximation Algorithm for
the Matching Augmentation Problem
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LP-BASED APPROXIMATION ALGORITHM

[Bamas, Drygala, Svensson, 2022] A Simple LP-Based Approximation Algorithm for
the Matching Augmentation Problem

- main result: better-than-2 e€ E\M
approximation for MAP Z L>2 YGC SCV
- using only cut-LP and a DFS tree €8 (9)

0<z<1 VeeF

9/17



OVERVIEW OF THE ALGORITHM

Algorithm 1: LP-based approximation algorithm for MAP

Input: A graph G = (V, E) and a matching M C E.

o < optimal extreme point solution to LP(G, M)

G’ « (V,Support(z¥))

T + LIGHTDFS(G', M) /| depth-first-search tree prioritizing light edges
y* < optimal extreme point solution to LP(G', T)

A + Support(y*)

return TU A
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WHY ARE WE INTERESTED IN A DFS TREE?



DFS TREE AND UP-LINKS

- after building a DFS tree, the remaining
edges are up-links

- up-link: one endpoint is an ancestor of
the other
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UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable
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UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable

Total unimodularity
For every square submatrix M of A, det M € {—1,0,1}

Theorem
If A e R™™ s totally unimodular and b € Z™, then the extreme point solutions
of

Az > b

z e [0,1]"

are integral
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WHY SHOULD WE RESTRICT THE DFS TREE TO THE SUPPORT?



IF WE DID NOT RESTRICT THE DFS TREE TO THE SUPPORT
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WHERE DOES THE BETTER-THAN-2 RATIO COME FROM?



HALF-INTEGRAL EDGES

Suppose Ve, z € {0, 3,1}
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HALF-INTEGRAL EDGES

Suppose Ve, z5 € {0, 3,1}

- cost of the DFS tree: cost(7) = n— 1 — | M|
- “overcost” of T:

cost(T) — 2*(T\ M) = Z 11—z

ee T\M S%

n—1—|M|

<
- 2

< 2B
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HALF-INTEGRAL EDGES

Suppose Ve, z5 € {0, 3,1}

- cost of the DFS tree: cost(7) = n— 1 — | M|
“overcost” of Tt

cost(T) — z*(T\ M) < (E\]M)

- since z* is feasible for LP(G', T),
y(E\NT) <z (E\T)

- total cost:

cost(1) + v (B\ 1) < 2*(1\ )+ O 4 oepy 1y = Sr(
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BOUNDING THE NUMBER OF FRACTIONAL EDGES

Each fractional edge is associated to a tight constraint

S={5¢ V;2"(6(9)) = 2}
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BOUNDING THE NUMBER OF FRACTIONAL EDGES

Each fractional edge is associated to a tight constraint

S={5¢ V;2"(6(9)) = 2}

Theorem
S can be reduced to a laminar family

Laminar family
F C 2Vis laminar: for every sets A,Be F,either ACB BC AorANB=o

Cardinality of a laminar family
If |V] = nand F is laminar, then |F| < 2n—1
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REDUCTION TO A LAMINAR FAMILY

LscanB) + lscaum) < lsa) + 1ls(m) A B

Uncrossing property
If S, T e S are not disjoint, then SN TeSand SUTe S

16/17



REDUCTION TO A LAMINAR FAMILY
Lscanp) + Lscaup) < Lsa) + lsp) A @ B
[ ] [ ]

Uncrossing property
If S, T e S are not disjoint, then SN TeSand SUTe S

span(F) = span {15(53;56 .7-"}

Theorem
Let F be the maximal laminar subfamily of S, then span(F) = span(S)
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CONCLUSION AND NEXT DIRECTIONS

- forest augmentation is still Next directions:

a very active problem - refine the approximation ratio

- despite its hardness, the
approximations keep improving

- use other techniques such as
tree carving

- analyzing it involves many
elegant constructions

- extend to path augmentation
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APPENDIX



TREE CARVING




DFS TREE WITH PATHS
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