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INTRODUCTION

How to make a network both resilient and affordable?

• resilient: stay connected even if some nodes / edges fail
• affordable: minimize the cost of the network
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ROBUSTNESS OF A NETWORK

k-edge-connectivity
For every pair (s, t), there are at least k
edge-disjoint paths between s and t

most of these problems are NP-hard
→ approximation algorithms

example of 2-edge-connected graph
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OUTLINE

• Graph augmentation: formulation, hardness, recent progress
• Matching augmentation: LP-based approximation algorithm
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GRAPH AUGMENTATION PROBLEM

Graph augmentation
Input G = (V,E), set of light edges F ⊆ E

Output Set of heavy edges E′ ⊆ E of min cardinality s.t. (V,F ∪ E′) is
2-edge-connected

F can be a forest, a tree, a matching, a collection of paths…

Weighted version

Input G = (V,E), w : E 7→ R+, set of light edges F ⊆ E
Output Set of heavy edges E′ ⊆ E of min weight s.t. (V,F ∪ E′) is

2-edge-connected
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EXAMPLE OF GRAPH AUGMENTATION
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CUT FORMULATION OF GRAPH AUGMENTATION

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges

(special case of max-flow min-cut)

Linear Program

min
∑

e∈E\F
xe∑

e∈δ(S)
xe ≥ 2 ∀∅ ⊊ S ⊊ V

∀e ∈ E

xe indicates whether e is selected
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CUT FORMULATION OF GRAPH AUGMENTATION

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges

(special case of max-flow min-cut)

Relaxed Linear Program

min
∑

e∈E\F
xe∑

e∈δ(S)
xe ≥ 2 ∀∅ ⊊ S ⊊ V

0 ≤ x ≤ 1 ∀e ∈ E

xe indicates whether e is selected
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HARDNESS OF APPROXIMATION

APX
NP optimization problems that have a
poly-time approximation algorithm with a
constant approximation ratio

APX-hardness
every problem in APX can be reduced to this
problem with an approximation-preserving
poly-time reduction

Theorem (Kortsarz & al. 2004)
Tree Augmentation is APX-hard

∃ε s.t. approximating TAP with
ratio 1 + ε is NP-hard
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RECENT PROGRESS

Weighted Tree Augmentation
• [Traub & al. 2021] 1 + ln 2 + ε

(Relative Greedy)

• [Traub & al. 2022] 1.5 + ε

(Local Search)

Forest Augmentation
[Grandoni & al. 2022] < 2
(Reduction to path augmentation)
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APPROXIMATING MATCHING
AUGMENTATION



LP-BASED APPROXIMATION ALGORITHM

[Bamas, Drygala, Svensson, 2022] A Simple LP-Based Approximation Algorithm for
the Matching Augmentation Problem

• main result: better-than-2
approximation for MAP

• using only cut-LP and a DFS tree

min
∑

e∈E\M
xe∑

e∈δ(S)
xe ≥ 2 ∀∅ ⊊ S ⊊ V

0 ≤ x ≤ 1 ∀e ∈ E
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OVERVIEW OF THE ALGORITHM

Algorithm 1: LP-based approximation algorithm for MAP

Input: A graph G = (V,E) and a matching M ⊆ E.

x∗ ← optimal extreme point solution to LP(G,M)

G′ ← (V, Support(x∗))
T← LIGHTDFS(G′,M) // depth-first-search tree prioritizing light edges
y∗ ← optimal extreme point solution to LP(G′,T)

A← Support(y∗)
return T ∪A
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WHY ARE WE INTERESTED IN A DFS TREE?
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DFS TREE AND UP-LINKS

• after building a DFS tree, the remaining
edges are up-links

• up-link: one endpoint is an ancestor of
the other
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UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable

Total unimodularity
For every square submatrix M of A, detM ∈ {−1, 0, 1}

Theorem
If A ∈ Rm×n is totally unimodular and b ∈ Zm, then the extreme point solutions
of Ax ≥ b

x ∈ [0, 1]n

are integral
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WHY SHOULD WE RESTRICT THE DFS TREE TO THE SUPPORT?
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IF WE DID NOT RESTRICT THE DFS TREE TO THE SUPPORT

1

2

3 4

5 6

7 8

9 10
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WHERE DOES THE BETTER-THAN-2 RATIO COME FROM?
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HALF-INTEGRAL EDGES

Suppose ∀e, x∗e ∈
{

0, 1
2 , 1

}

• cost of the DFS tree: cost(T) = n− 1− |M|
• “overcost” of T:
• since x∗ is feasible for LP(G′,T),

y∗(E \ T) ≤ x∗(E \ T)

• total cost:

cost(T) + y∗(E \ T) ≤ x∗(T \M) +
x∗(E \M)

2 + x∗(E \ T) =
3
2x∗(E \M)
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BOUNDING THE NUMBER OF FRACTIONAL EDGES

Each fractional edge is associated to a tight constraint

S = {S ⊊ V; x∗(δ(S)) = 2}

Theorem
S can be reduced to a laminar family

Laminar family
F ⊆ 2V is laminar: for every sets A,B ∈ F , either A ⊆ B, B ⊆ A or A ∩ B = ∅

Cardinality of a laminar family
If |V| = n and F is laminar, then |F| ≤ 2n− 1
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REDUCTION TO A LAMINAR FAMILY

1δ(A∩B) + 1δ(A∪B) ≤ 1δ(A) + 1δ(B) A B

Uncrossing property
If S,T ∈ S are not disjoint, then S ∩ T ∈ S and S ∪ T ∈ S

span(F) = span
{

1δ(S);S ∈ F
}

Theorem
Let F be the maximal laminar subfamily of S , then span(F) = span(S)
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CONCLUSION AND NEXT DIRECTIONS

• forest augmentation is still
a very active problem

• despite its hardness, the
approximations keep improving

• analyzing it involves many
elegant constructions

Next directions:
• refine the approximation ratio
• use other techniques such as
tree carving

• extend to path augmentation
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APPENDIX



TREE CARVING
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DFS TREE WITH PATHS
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