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TOKENIZATION WITH K-MERS

k-mer: word of size R CTGAAATG..
CTGAA
we typically index the k-mers of a sequence TGAAA
instead of the sequence itself GAAAT
AAATG

most existing space-efficient data structures for storing k-mers are static
(e.g. spectral BWT [Alanko et al. 22], SSHash [Pibiri 22])
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K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]
- we can see k-mers as integers in [4]

- since they're usually very sparse, we can

use a sparse bitvector to store them

A— 00

c—01

G—-10 T—11

Limitations

- the data structure is static
- it's not cache-efficient

- index(ATGTC ) =237
- index( TGTCG) = 950

average distance of 4%/3
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K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11] Limitations
- we can see k-mers as integers in [4] - the data structure is static
- since they're usually very sparse, we can * it's not cache-efficient
use a sparse bitvector to store them - index(ATGTC ) = 237

- index( TGTCG) = 950
average distance of 4%/3

A—00 C—01 G—10 T—11

Can we improve this approach?
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THE QUEST FOR AN IDEAL DATA STRUCTURE

- space-efficient: close to the theoretical lower bound

- dynamic: support insertion and deletion after construction
- efficient queries:

- membership
- enumeration
- insertion

- deletion

- locality-preserving: reduce cache misses when querying consecutive R-mers
(we often perform batch queries on many overlapping k-mers)
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A COMPRESSED REPRESENTATION OF
SPARSE INTEGER SETS




UNDER THE HOOD: ELIAS-FANO ENCODING

[Elias 74, Fano 71]

- separate the high bits and low bits

- pack the low bits together
- store the high bits in a bitvector

T =657 :

We choose the size of the low bits as

| = {lg EW
n

where n is the number of elements
and w is the size of the universe

101 0010001

l
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UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111
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UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

% hi l
‘\\\\\\\\\\000 9000010
*\\\\\\\\\ooo 0000011
00111111011
T 011/0010011"

:::::::::::011 0@1011@1” < Lbits
011, 0010111‘

| ——1u110000
T ——111,1160111;
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UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits
I % h; &
‘\\\\\\\\\\000 9000010
*\\\\\\\\\000 0@00011‘
001! 1111@11‘
T 011!0010011

:::::::::::011 0@1011@1” < Lbits
011, 0010111‘

| ——1u110000
T ——111,1160111;

2n bits

(hi < 3 < n)
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ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

EF(n,u) =2n+ n{lg %]

Information theoretic lower bound
lg (u) ~nlge+ nlgE
n n

~ 1.44n+ nlg 4
n

Note that the bound can get lower if we have
additional knowledge about the distribution.
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PARTITIONING THE SET
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PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; 2n + n[lg %] bits
- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough

What is the optimal partition cost?
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REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[L,n] E=
{i<jiijeV}

* w;; = cost to encode S[¢, j]
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REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[1,n] E=

{i<isijeV} G e @
* w;; = cost to encode S[¢, j] @X/

Computing the optimal partition

- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming

9/13



REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[1,n] E=

{i<isijeV} G e @
* w;; = cost to encode S[¢, j] @X/

Computing the optimal partition
- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming
- (1+¢)-approximation in O(n - 11Inl) by sparsifying the graph

9/13



MAKE IT DYNAMIC! [PIBIRI & VENTURINI 17]

Main idea: augment the partitioned data structure Query complexity:
- build a B+ tree on top of the partitions - membership and
- maintain a dynamic prefix sum successor in O(lglg n)
- maintain dynamic successors with a y-fast trie - insertion and deletion

Good news: it only requires o(n) extra space inO(lgn /lglgn)
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BACK TO K-MERS



A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG
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A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<
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A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

-z — ((z), rotation index) is a bijective transformation

- necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)
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RANKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with o letters is

kz<>UN/:

d|k
so only a fraction % of the universe is actually used

AAAA Ccccc GGGG TTTT

Ranking: given a necklace (z), find 4 s.t. (z) is the i-th smallest necklace of size k
We can compute the rank in O(k*) time using Sawada'’s algorithm
[Sawada & Williams 17]
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CONCLUSION



TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics

- Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

- partitioning helps both in reducing space usage and
making the structure dynamic

- a well-chosen encoding can significantly improve locality
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TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics

- Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

- partitioning helps both in reducing space usage and
making the structure dynamic

- a well-chosen encoding can significantly improve locality

Thank you!
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