
A compressed, dynamic and locality-preserving
representation of k-mer sets for genomic analysis

Igor Martayan
November 10, 2023

RT MIA — Journée Réduction de Dimension — ENS Lyon

DNA Sequencing

DNA samples −→ −→ CTCGAGGATT…

0

20

40

60

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Date

nu
m

be
r

of
 b

as
es

(P
et

ab
as

e)

SRA database growth from 2012 to present

1/13

DNA Sequencing

DNA samples −→ −→ CTCGAGGATT…

0

20

40

60

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Date

nu
m

be
r

of
 b

as
es

(P
et

ab
as

e)

SRA database growth from 2012 to present

1/13

Tokenization with k-mers

k-mer: word of size k

we typically index the k-mers of a sequence
instead of the sequence itself

CTGAAATG…
CTGAA
TGAAA
GAAAT
AAATG

most existing space-efficient data structures for storing k-mers are static
(e.g. spectral BWT [Alanko et al. 22], SSHash [Pibiri 22])

2/13

k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

• since they’re usually very sparse, we can
use a sparse bitvector to store them

A → 00 C → 01 G → 10 T → 11

Limitations
• the data structure is static
• it’s not cache-efficient

• index(ATGTC) = 237
• index(TGTCG) = 950

average distance of 4k/3

Can we improve this approach?

3/13

k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

• since they’re usually very sparse, we can
use a sparse bitvector to store them

A → 00 C → 01 G → 10 T → 11

Limitations
• the data structure is static
• it’s not cache-efficient

• index(ATGTC) = 237
• index(TGTCG) = 950

average distance of 4k/3
Can we improve this approach?

3/13

The quest for an ideal data structure

• space-efficient: close to the theoretical lower bound
• dynamic: support insertion and deletion after construction
• efficient queries:

• membership
• enumeration
• insertion
• deletion

• locality-preserving: reduce cache misses when querying consecutive k-mers
(we often perform batch queries on many overlapping k-mers)

4/13

A compressed representation of
sparse integer sets

Under the hood: Elias-Fano encoding

[Elias 74, Fano 71]
• separate the high bits and low bits
• pack the low bits together
• store the high bits in a bitvector

We choose the size of the low bits as

l =
⌈
lg

u
n

⌉
where n is the number of elements
and u is the size of the universe

101 0010001x = 657 :

l

5/13

Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

6/13

Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

6/13

Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

6/13

Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

6/13

Under the hood: Elias-Fano encoding

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

6/13

Almost optimal space usage

Space usage of Elias-Fano

EF(n, u) = 2n + n
⌈
lg

u
n

⌉
Information theoretic lower bound

lg

(
u
n

)
≈ n lg e + n lg

u
n

≈ 1.44n + n lg
u
n

Note that the bound can get lower if we have
additional knowledge about the distribution.

7/13

Partitioning the set

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,

choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits

• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Partitioning the set [Ottaviano & Venturini 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

• for sparse blocks: Elias-Fano ; 2n + n
⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

Reduction to shortest path [Ferragina et al. 11]

• V = J1,nK E =

{i < j ; i, j ∈ V}
• wi,j = cost to encode S [i, j]

1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V |+ |E |) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph

9/13

Reduction to shortest path [Ferragina et al. 11]

• V = J1,nK E =

{i < j ; i, j ∈ V}
• wi,j = cost to encode S [i, j]

1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V |+ |E |) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph

9/13

Reduction to shortest path [Ferragina et al. 11]

• V = J1,nK E =

{i < j ; i, j ∈ V}
• wi,j = cost to encode S [i, j]

1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V |+ |E |) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph

9/13

Make it dynamic! [Pibiri & Venturini 17]

Main idea: augment the partitioned data structure
• build a B+ tree on top of the partitions
• maintain a dynamic prefix sum
• maintain dynamic successors with a y-fast trie

Good news: it only requires o(n) extra space

Query complexity:
• membership and
successor in O(lg lg n)

• insertion and deletion
in O(lg n / lg lg n)

10/13

Back to k-mers

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)

11/13

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)

11/13

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)

11/13

Ranking necklaces to improve compression

The number of necklaces of size k on an alphabet with σ letters is

N (k) = 1
k
∑
d|k

ϕ

(
k
d

)
σd ∼ σk

k

so only a fraction 1
k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time using Sawada’s algorithm

[Sawada & Williams 17]

12/13

Conclusion

Take home messages

• k-mer sets are ubiquitous in bioinformatics

• Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

• partitioning helps both in reducing space usage and
making the structure dynamic

• a well-chosen encoding can significantly improve locality

Thank you!

13/13

Take home messages

• k-mer sets are ubiquitous in bioinformatics

• Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

• partitioning helps both in reducing space usage and
making the structure dynamic

• a well-chosen encoding can significantly improve locality

Thank you!

13/13

References i

Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). “Succinct k-mer sets using

subset rank queries on the spectral burrows-wheeler transform”. In: bioRxiv, pp. 2022–05.

Conway, Thomas C & Andrew J Bromage (2011). “Succinct data structures for assembling large

genomes”. In: Bioinformatics 27.4, pp. 479–486.

Elias, Peter (1974). “Efficient storage and retrieval by content and address of static files”. In:

Journal of the ACM (JACM) 21.2, pp. 246–260.

Fano, Robert Mario (1971). On the number of bits required to implement an associative

memory. Massachusetts Institute of Technology, Project MAC.

Ferragina, Paolo, Igor Nitto & Rossano Venturini (2011). “On optimally partitioning a text to

improve its compression”. In: Algorithmica 61, pp. 51–74.

References ii

Ottaviano, Giuseppe & Rossano Venturini (2014). “Partitioned elias-fano indexes”. In:

Proceedings of the 37th international ACM SIGIR conference on Research & development in

information retrieval, pp. 273–282.

Pibiri, Giulio Ermanno (2022). “Sparse and skew hashing of k-mers”. In: Bioinformatics

38.Supplement_1, pp. i185–i194.

Pibiri, Giulio Ermanno & Rossano Venturini (2017). “Dynamic elias-fano representation”. In:

28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

Sawada, Joe & Aaron Williams (2017). “Practical algorithms to rank necklaces, Lyndon words,

and de Bruijn sequences”. In: Journal of Discrete Algorithms 43, pp. 95–110.

	A compressed representation of sparse integer sets
	Partitioning the set
	Back to k-mers
	Conclusion
	Appendix

