A COMPRESSED, DYNAMIC AND LOCALITY-PRESERVING
REPRESENTATION OF K-MER SETS FOR GENOMIC ANALYSIS

lgor MARTAYAN
November 10, 2023

RT MIA — Journée Réduction de Dimension — ENS Lyon

Universitd
(& i =Ic

DNA SEQUENCING

£
DNA samples < — — CTCGAGGATT...

1/13

DNA SEQUENCING

£
DNA samples < — — CTCGAGGATT...

SRA database growth from 2012 to present
60

N
o

N
o

number of bases
(Petabase)

v 1/13

TOKENIZATION WITH K-MERS

k-mer: word of size R CTGAAATG..
CTGAA
we typically index the k-mers of a sequence TGAAA
instead of the sequence itself GAAAT
AAATG

most existing space-efficient data structures for storing k-mers are static
(e.g. spectral BWT [Alanko et al. 22], SSHash [Pibiri 22])

2/13

K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]
- we can see k-mers as integers in [4]

- since they're usually very sparse, we can

use a sparse bitvector to store them

A— 00

c—01

G—-10 T—11

Limitations

- the data structure is static
- it's not cache-efficient

- index(ATGTC) =237
- index(TGTCG) = 950

average distance of 4%/3

3/13

K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11] Limitations
- we can see k-mers as integers in [4] - the data structure is static
- since they're usually very sparse, we can * it's not cache-efficient
use a sparse bitvector to store them - index(ATGTC) = 237

- index(TGTCG) = 950
average distance of 4%/3

A—00 C—01 G—10 T—11

Can we improve this approach?

3/13

THE QUEST FOR AN IDEAL DATA STRUCTURE

- space-efficient: close to the theoretical lower bound

- dynamic: support insertion and deletion after construction
- efficient queries:

- membership
- enumeration
- insertion

- deletion

- locality-preserving: reduce cache misses when querying consecutive R-mers
(we often perform batch queries on many overlapping k-mers)

4/13

A COMPRESSED REPRESENTATION OF
SPARSE INTEGER SETS

UNDER THE HOOD: ELIAS-FANO ENCODING

[Elias 74, Fano 71]

- separate the high bits and low bits

- pack the low bits together
- store the high bits in a bitvector

T =657 :

We choose the size of the low bits as

| = {lg EW
n

where n is the number of elements
and w is the size of the universe

101 0010001

l

5/13

UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

6/13

UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

hi b
000 0000011 |
0011111011
0110010011 | |
011}@@10110}"><lb”5
0110010111 |
11111100011

111,1100111;

,,,,,,,,,

6/13

UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

hi b
000 0000011 |
0011111011
0110010011 | |
011}@@10110}"><lb”5
0110010111 |
11111100011

111,1100111;

,,,,,,,,,

6/13

UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits

% hi l
‘\\\\\\\\\\000 9000010
*\\\\\\\\\ooo 0000011
00111111011
T 011/0010011"

:::::::::::011 0@1011@1” < Lbits
011, 0010111‘

| ——1u110000
T ——111,1160111;

6/13

UNDER THE HOOD: ELIAS-FANO ENCODING

S ={2,3,251,403,406,407,995,999} n=8 w=1000 = [lg%] =7 bits
I % h; &
‘\\\\\\\\\\000 9000010
*\\\\\\\\\000 0@00011‘
001! 1111@11‘
T 011!0010011

:::::::::::011 0@1011@1” < Lbits
011, 0010111‘

| ——1u110000
T ——111,1160111;

2n bits

(hi < 3 < n)

6/13

ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

EF(n,u) =2n+ n{lg %]

Information theoretic lower bound
lg (u) ~nlge+ nlgE
n n

~ 1.44n+ nlg 4
n

Note that the bound can get lower if we have
additional knowledge about the distribution.

7/13

PARTITIONING THE SET

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

8/13

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,

8/13

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; 2n + n[lg %] bits

8/13

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; 2n + n[lg %] bits

- for dense blocks: plain bitset; u bits

8/13

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; 2n + n[lg %] bits
- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough

8/13

PARTITIONING THE SET [OTTAVIANO & VENTURINI 14]

Main idea: split the sequence into smaller blocks,
choose the best encoding depending on the density:

- for sparse blocks: Elias-Fano ; 2n + n[lg %] bits
- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough

What is the optimal partition cost?

8/13

REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[L,n] E=
{i<jiijeV}

* w;; = cost to encode S[¢, j]

9/13

REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[1,n] E=

{i<isijeV} G e @
* w;; = cost to encode S[¢, j] @X/

Computing the optimal partition

- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming

9/13

REDUCTION TO SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[1,n] E=

{i<isijeV} G e @
* w;; = cost to encode S[¢, j] @X/

Computing the optimal partition
- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming
- (1+¢)-approximation in O(n - 11Inl) by sparsifying the graph

9/13

MAKE IT DYNAMIC! [PIBIRI & VENTURINI 17]

Main idea: augment the partitioned data structure Query complexity:
- build a B+ tree on top of the partitions - membership and
- maintain a dynamic prefix sum successor in O(lglg n)
- maintain dynamic successors with a y-fast trie - insertion and deletion

Good news: it only requires o(n) extra space inO(lgn /lglgn)

10/13

BACK TO K-MERS

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

1/13

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

1/13

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

-z — ((z), rotation index) is a bijective transformation

- necklaces of consecutive k-mers share long prefixes (a.k.a. minimizers)

1/13

RANKING NECKLACES TO IMPROVE COMPRESSION

The number of necklaces of size k on an alphabet with o letters is

kz<>UN/:

d|k
so only a fraction % of the universe is actually used

AAAA Ccccc GGGG TTTT

Ranking: given a necklace (z), find 4 s.t. (z) is the i-th smallest necklace of size k
We can compute the rank in O(k*) time using Sawada'’s algorithm
[Sawada & Williams 17]

12/13

CONCLUSION

TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics

- Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

- partitioning helps both in reducing space usage and
making the structure dynamic

- a well-chosen encoding can significantly improve locality

13/13

TAKE HOME MESSAGES

- k-mer sets are ubiquitous in bioinformatics

- Elias-Fano has a near-optimal space usage
assuming we have no prior knowledge on the elements

- partitioning helps both in reducing space usage and
making the structure dynamic

- a well-chosen encoding can significantly improve locality

Thank you!

13/13

REFERENCES |

) & =) &

Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). “Succinct k-mer sets using
subset rank queries on the spectral burrows-wheeler transform”. In: bioRxiv, pp. 2022-05.
Conway, Thomas C & Andrew | Bromage (2011). “Succinct data structures for assembling large
genomes”. In: Bioinformatics 27.4, pp. 479-486.

Elias, Peter (1974). “Efficient storage and retrieval by content and address of static files”. In:
Journal of the ACM (JACM) 21.2, pp. 246-260.

Fano, Robert Mario (1971). On the number of bits required to implement an associative
memory. Massachusetts Institute of Technology, Project MAC.

Ferragina, Paolo, Igor Nitto & Rossano Venturini (2011). “On optimally partitioning a text to

improve its compression”. In: Algorithmica 61, pp. 51-74.

REFERENCES I

@ Ottaviano, Giuseppe & Rossano Venturini (2014). “Partitioned elias-fano indexes”. In:
Proceedings of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pp. 273-282.

@ Pibiri, Giulio Ermanno (2022). “Sparse and skew hashing of k-mers”. In: Bioinformatics
38.Supplement_1, pp. i185-i194.

[@ Pibiri, Giulio Ermanno & Rossano Venturini (2017). “Dynamic elias-fano representation”. In:
28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

@ Sawada, Joe & Aaron Williams (2017). “Practical algorithms to rank necklaces, Lyndon words,

and de Bruijn sequences”. In: Journal of Discrete Algorithms 43, pp. 95-110.

	A compressed representation of sparse integer sets
	Partitioning the set
	Back to k-mers
	Conclusion
	Appendix

