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DNA Sequencing & Tokenization with k-mers

DNA samples −→ −→ CTGAAATG…

We typically index the words of size k (k-mers)
instead of the sequence itself.

In practice, we usually consider k 6 63 so that
each k-mer fits inside a machine word.

CTGAA
TGAAA
GAAAT
AAATG
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Motivation of this work

Plenty of compact data structures for storing k-mers …but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]
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Revisiting a simple idea: k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

A → 00 C → 01 G → 10 T → 11
• since they’re usually very sparse, we can
use a sparse bitvector to store them

Limitations
• it’s not really dynamic
• it’s not cache-efficient

• index(ATAACGCCA ) = 49,556
• index( TAACGCCAT) = 198,227

→ average distance of 4k/3

How can we improve this approach?
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Wish list for an ideal data structure

• space-efficient: few bits / k-mer
• dynamic: support insertion and deletion after construction

• efficient queries:
• membership
• enumeration
• insertion
• deletion

• locality-preserving: reduce cache misses
when querying consecutive k-mers

CTGAAATG…
CTGAA
TGAAA
GAAAT
AAATG

batch queries
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Preserving locality with necklaces



A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a reversible transformation
• necklaces of consecutive k-mers share long prefixes
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A closer look at the locality of necklaces

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT
AACGTCATCTCTCATTCTGTGAGTTCTTCCT
AACGTCATCTCTCATTCTGTGACTTCTTCCT
AACGTCATCTCTCATTCTGTGACATCTTCCT
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

0 20 40 60 80 100
0

10

20

30

Size of common prefix
 between necklaces of successive k-mers (k = 31)

6/12



Practical use of necklaces



Overview of our data structure (CBL)

Quotiented
data structure

Query x :
1. compute 〈x〉
2. split 〈x〉 as q || r
3. look for (q, r)

sparse bitvector
for prefixes

pointers to
containers

packed vectors
for suffixes

q

r

rank
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Accelerating the computation of consecutive necklaces

Basic approach: compute every cyclic rotation and select the smallest in O(k).
→ O(nk) for n queries

Better approach: amortize the computation cost for consecutive queries.

Key observation
Given a fixed m, if 〈x〉 does not start at one of the m − 1 last positions of x ,
its prefix of size m is the smallest factor of size m in x .

Good news: we can keep track of the smallest factors of size m in O(1)
amortized time using a monotone queue.
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Accelerating the computation of consecutive necklaces

Faster necklace computation
Only consider the cyclic rotations that start:

• at one of the smallest factors of size m
• at one of the m − 1 last positions

Useful property [Zheng et al. 20]
Assuming m = Ω(log k), the probability that a
k-mer contains duplicate m-mers is o(1/k).

By choosing m = Θ(log k),
the smallest factor of size m is unique w.h.p.

→ O(nm) = O(n log k) for n queries (on average)
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Densifiying the space of necklaces



Densifiying the space of necklaces by ranking

The number of necklaces of size k on an alphabet with σ letters is

N (k) = 1
k
∑
d|k

ϕ

(
k
d

)
σd ∼ σk

k

so only a fraction 1
k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time [Sawada & Williams 17]

Tradeoff: better locality + compression vs O
(
k2) queries
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Can we do better for consecutive necklaces? (I don’t know yet)

Ranking in O
(
k2) is generally too expensive for our use case,

but it might be faster to rank necklaces of consecutive k-mers.

Since most necklaces of consecutive words share the same
starting position, they only differ by a single letter.

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT

Formulation in the binary case (σ = 2)
How does the rank of 〈x〉 change if we flip its i-th bit?
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Conclusion



Take-home messages & Open questions

Indexing k-mers with their necklaces:
• preserves locality
• improves compression
• fits in well with a quotiented data structure
• combines easily with dynamic operations

Future questions:
• What is the average distance between necklaces of consecutive k-mers?
• Can we rank necklaces in subquadratic time?
• Can we accelerate ranking for necklaces of consecutive k-mers?

Thank you!
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