A SPACE-EFFICIENT, LOCALITY-PRESERVING AND DYNAMIC DATA
STRUCTURE FOR INDEXING K-MERS

lgor MARTAYAN, Bastien CAZAUX, Antoine LIMASSET & Camille MARCHET
November 21, 2023

SeqBIM 2023 — Lille

v
Lo @ Suc

https://igor.martayan.org/
https://seqbim.cnrs.fr/seqbim-2023/

MOTIVATION

Plenty of compact data structures for storing k-mers

Time (ps/query)

Nav. lower bound v Plain-split + EF-concat e Sshash
Plain-matrix <« RRR-split ¢ Plain-subsetwt e Bifrost
RRR-matrix Ao EF-split ¢ RRR-subsetwt e VARI
EF-matrix + Plain-concat
Single positive Single negative Streaming positive
. . e
i 102 4
H 10% 4
107 4o
£ %
i 1014 € '
RS L® i
4 Ay b4 %
® 10° 4 i g
® ay® 3 o
10°4
100 . = b ¢ 10-1 H
10! 10! 10!

Memory (bits/kmer)

Memory (bits/kmer)

Memory (bits/kmer)
1/12

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

MOTIVATION

Plenty of compact data structures for storing k-mers ...but most of them are static

Time (ps/query)

Nav. lower bound v Plain-split + EF-concat e Sshash
Plain-matrix <« RRR-split ¢ Plain-subsetwt e Bifrost
RRR-matrix Ao EF-split ¢ RRR-subsetwt e VARI
EF-matrix + Plain-concat
Single positive Single negative Streaming positive
. . e
i 102 4
H 10% 4
107 4o
£ %
i 1014 € '
RS L® i
4 Ay b4 %
® 10° 4 i g
® ay® 3 o
10°4
100 . = b ¢ 10-1 H
10! 10! 10!

Memory (bits/kmer)

Memory (bits/kmer)

Memory (bits/kmer)
1/12

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]

* we can see k-mers as integers in [4]
A—-00 C—01 G—10 T—11

- since they're usually very sparse, we can
use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient

- index(ATAACGCCA) = 49,556
- index(TAACGCCAT) = 198,227

— average distance of 4¥/3

2/12

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11] Limitations
- we can see k-mers as integers in [[4’“]] - it's not really dynamic
A—-00 C—01 G—-10 T—11 - it's not cache-efficient
- since they're usually very sparse, we can - index(ATAACGCCA) = 49,556
use a sparse bitvector to store them + index(' TAACGCCAT) = 198,227

— average distance of 4¢/3
How can we improve this approach?

2/12

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer

- dynamic: support insertion and deletion after construction

- efficient queries:

CTGAAATG..
- membership CTGAA
- enumeration TGAAA
+Insertion GAAAT
- (deletion) AAATG
- locality-preserving: reduce cache misses
when querying consecutive k-mers batch queries

3/12

PRESERVING K-MER LOCALITY

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

4/12

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

4/12

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

-z — ((z), rotation index) is a bijective transformation

- necklaces of consecutive k-mers share long prefixes

4/12

A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT . .

T Size of common prefix
AACGTCATCTCTCATTCTGTGAGTTCTTCCT between necklaces of successive k-mers (k= 31)
AACGTCATCTCTCATTCTGTGACTTCTTCCT — 30{ S*8™ ¢ T Ny ,’ som ¢ o
AACGTCATCTCTCATTCTGTGACATCTTCCT i : : -.E‘é 2
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT 10 -
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT 0 T
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

20 1

5/12

RANKING NECKLACES TO IMPROVE COMPRESSION

k
The number of necklaces of size k on an alphabet with o letters is ~ 07

so only a fraction % of the universe is actually used

AAAA Cccc GGGG TTTT
#HHHHHHHHH- -,

6/12

RANKING NECKLACES TO IMPROVE COMPRESSION

k
The number of necklaces of size k on an alphabet with o letters is ~ %

so only a fraction % of the universe is actually used

AAAA Cccc GGGG TTTT
#HHHHHHHHH- -,

R —

Ranking: given a necklace (z), find 7 s.t. (z) is the i-th smallest necklace of size k
We can compute the rank in O(k*) time [Sawada & Williams 17]
(Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs O(k?) queries

6/12

COMPRESSING SPARSE INTEGER SETS

COMPRESSING SPARSE INTEGER SETS WITH ELIAS-FANO ENCODING

[Elias 7%, Fano 71] {2,3,210, 216, 231, 265, 491, 499}
- separate the high bits and low bits : 1000 @00010
‘6)00 @00@11

- compress them with different methods
10111010010

slowly 10111011000
inueaﬁngi@llll@@lll
- nis the number of elements 11001001001

- u is the size of the universe 111 101911
e.g. u = 4% for k-mers ‘ 111 1110011

B ———

l

We choose the size of the low bits as [= [lg q
n

7/12

ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

EF(n,u) =2n+n {lg Ew
n

e.g. for n = 10" and u = 43!, EF uses 31 bits / item
Information theoretic lower bound
lg <u> A nlge—l—nlgE
n n
~ 1.44n+ nlg 4
n

Note that the bound can get lower if we have

additional knowledge about the distribution.
8/12

PARTITIONING SPARSE INTEGER SETS

PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

lot of empty regions

9/12

PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks

9/12

PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks, choose the best encoding:
+ for sparse blocks: Elias-Fano ; 2n + n[lg £| bits

- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough

9/12

PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks, choose the best encoding:
+ for sparse blocks: Elias-Fano ; 2n + n[lg £| bits

- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough
Computing the optimal partition

- optimal solution in O(n?) using dynamic programming

* (14 ¢)-approximation in O(n-11n1)

9/12

DYNAMIC VERSION & COMPLEXITY RECAP [PIBIRI & VENTURINI 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

— WIP, no practical implementation available yet

Query complexity
- membership and successor in O(lglg n)
- insertion and deletion in O(lgn /lglgn)

10/12

DYNAMIC VERSION & COMPLEXITY RECAP [PIBIRI & VENTURINI 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

— WIP, no practical implementation available yet

Query complexity
- membership and successor in O(lglg n)
- insertion and deletion in O(lgn /lglgn)

10/12

PARTITIONING NECKLACES: A SIMPLE ALTERNATIVE TO RANKING

AAAA Cccc GGGG TTTT
AHHHHHHHHH-- -
L 1 L 1 | — —_ u

- ranking saves lg k bits / k-mer but costs O(k?) / query
- partitioning typically saves 3 lg k bits / k-mer

1/12

CONCLUSION

TAKE-HOME MESSAGES

Using necklaces to represent k-mers Future steps
- preserves locality - efficient implementation of the
- improves compression dynamic partitions
- batch necklace computation
Partitioned sparse sets - batch rank computation
- fit in well with necklace locality - subquadratic ranking?

- can support dynamic operations - bound on the necklace distance

12/12

TAKE-HOME MESSAGES

Using necklaces to represent k-mers Future steps
- preserves locality - efficient implementation of the
- improves compression dynamic partitions
- batch necklace computation
Partitioned sparse sets - batch rank computation
- fit in well with necklace locality - subquadratic ranking?
- can support dynamic operations - bound on the necklace distance

Thank you!

12/12

APPENDIX

REFERENCES |

) & =) &

Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). “Succinct k-mer sets using
subset rank queries on the spectral burrows-wheeler transform”. In: bioRxiv, pp. 2022-05.
Conway, Thomas C & Andrew | Bromage (2011). “Succinct data structures for assembling large
genomes”. In: Bioinformatics 27.4, pp. 479-486.

Elias, Peter (1974). “Efficient storage and retrieval by content and address of static files”. In:
Journal of the ACM (JACM) 21.2, pp. 246-260.

Fano, Robert Mario (1971). On the number of bits required to implement an associative
memory. Massachusetts Institute of Technology, Project MAC.

Ferragina, Paolo, Igor Nitto & Rossano Venturini (2011). “On optimally partitioning a text to

improve its compression”. In: Algorithmica 61, pp. 51-74.

REFERENCES I

@ Ottaviano, Giuseppe & Rossano Venturini (2014). “Partitioned elias-fano indexes”. In:
Proceedings of the 37th international ACM SIGIR conference on Research & development in
information retrieval, pp. 273-282.

@ Pibiri, Giulio Ermanno & Rossano Venturini (2017). “Dynamic elias-fano representation”. In:
28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

@ Sawada, Joe & Aaron Williams (2017). “Practical algorithms to rank necklaces, Lyndon words,

and de Bruijn sequences”. In: Journal of Discrete Algorithms 43, pp. 95-110.

A CLOSER LOOK AT ELIAS-FANO ENCODING [ELIAS 74, FANO 71]

S = {2,3,251,403,406,407,995,999} n=8 w=1000 [= [lg%] =7 bits

‘% hi li
‘\\\\\\\\\\\000/0000010‘
‘\\\\\\\\\\‘090:0@00011;
0011111011 |
. ——011.0010011"

::::::::::::011001011071X ot
01110010111

111110000
o —111,1100111;

2n bits

(hi < 31 < n)

OPTIMAL PARTITION AS A SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[L,n] E=
{i<j;ijeV}

- w;; = cost to encode S[¢, j]

Computing the optimal partition
- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming
* (1+¢)-approximation in O(n - 11In1) by sparsifying the graph

	Preserving k-mer locality
	Compressing sparse integer sets
	Partitioning sparse integer sets
	Conclusion
	Appendix

