
A space-efficient, locality-preserving and dynamic data
structure for indexing k-mers

Igor Martayan, Bastien Cazaux, Antoine Limasset & Camille Marchet
November 21, 2023

SeqBIM 2023 — Lille

https://igor.martayan.org/
https://seqbim.cnrs.fr/seqbim-2023/

Motivation

Plenty of compact data structures for storing k-mers

…but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]
1/12

Motivation

Plenty of compact data structures for storing k-mers …but most of them are static

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]
1/12

Revisiting a simple idea: k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

A → 00 C → 01 G → 10 T → 11
• since they’re usually very sparse, we can
use a sparse bitvector to store them

Limitations
• it’s not really dynamic
• it’s not cache-efficient

• index(ATAACGCCA) = 49,556
• index(TAACGCCAT) = 198,227

→ average distance of 4k/3

How can we improve this approach?

2/12

Revisiting a simple idea: k-mers as a sparse set of integers

[Conway & Bromage 11]
• we can see k-mers as integers in

q
4ky

A → 00 C → 01 G → 10 T → 11
• since they’re usually very sparse, we can
use a sparse bitvector to store them

Limitations
• it’s not really dynamic
• it’s not cache-efficient

• index(ATAACGCCA) = 49,556
• index(TAACGCCAT) = 198,227

→ average distance of 4k/3
How can we improve this approach?

2/12

Wish list for an ideal data structure

• space-efficient: few bits / k-mer
• dynamic: support insertion and deletion after construction

• efficient queries:
• membership
• enumeration
• insertion
• (deletion)

• locality-preserving: reduce cache misses
when querying consecutive k-mers

CTGAAATG…
CTGAA
TGAAA
GAAAT
AAATG

batch queries

3/12

Preserving k-mer locality

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes

4/12

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes

4/12

A locality-preserving encoding of k-mers

CTAAC
TAACG

AACCT
AACGT

necklaces

Alternative encoding based on necklaces
The necklace of x is its smallest cyclic rotation 〈x〉 = min

06i<k
x(i)

• x 7→ (〈x〉, rotation index) is a bijective transformation
• necklaces of consecutive k-mers share long prefixes

4/12

A closer look at the locality of necklaces

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT
AACGTCATCTCTCATTCTGTGAGTTCTTCCT
AACGTCATCTCTCATTCTGTGACTTCTTCCT
AACGTCATCTCTCATTCTGTGACATCTTCCT
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

0 20 40 60 80 100
0

10

20

30

Size of common prefix
 between necklaces of successive k-mers (k = 31)

5/12

Ranking necklaces to improve compression

The number of necklaces of size k on an alphabet with σ letters is ∼ σk

k
so only a fraction 1

k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time [Sawada & Williams 17]

(Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs O
(
k2) queries

6/12

Ranking necklaces to improve compression

The number of necklaces of size k on an alphabet with σ letters is ∼ σk

k
so only a fraction 1

k of the universe is actually used

AAAA CCCC GGGG TTTT

Ranking: given a necklace 〈x〉, find i s.t. 〈x〉 is the i-th smallest necklace of size k
We can compute the rank in O

(
k2) time [Sawada & Williams 17]

(Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs O
(
k2) queries

6/12

Compressing sparse integer sets

Compressing sparse integer sets with Elias-Fano encoding

[Elias 74, Fano 71]
• separate the high bits and low bits
• compress them with different methods

We choose the size of the low bits as l =
⌈
lg

u
n

⌉
• n is the number of elements
• u is the size of the universe
e.g. u = 4k for k-mers

{2, 3, 210, 216, 231, 265, 491, 499}

000 000010
000 000011
011 010010
011 011000
011 100111
100 001001
111 101011
111 110011

slowly
increasing

l

7/12

Almost optimal space usage

Space usage of Elias-Fano

EF(n, u) = 2n + n
⌈
lg

u
n

⌉
e.g. for n = 1010 and u = 431, EF uses 31 bits / item

Information theoretic lower bound

lg

(
u
n

)
≈ n lg e + n lg

u
n

≈ 1.44n + n lg
u
n

Note that the bound can get lower if we have
additional knowledge about the distribution.

8/12

Partitioning sparse integer sets

Partitioning sparse integer sets [Ottaviano & Venturini 14]

lot of empty regions

Split the sequence into smaller blocks, choose the best encoding:
• for sparse blocks: Elias-Fano ; 2n + n

⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

Computing the optimal partition

• optimal solution in O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)

9/12

Partitioning sparse integer sets [Ottaviano & Venturini 14]

lot of empty regions

Split the sequence into smaller blocks

, choose the best encoding:
• for sparse blocks: Elias-Fano ; 2n + n

⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

Computing the optimal partition

• optimal solution in O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)

9/12

Partitioning sparse integer sets [Ottaviano & Venturini 14]

lot of empty regions

Split the sequence into smaller blocks, choose the best encoding:
• for sparse blocks: Elias-Fano ; 2n + n

⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

Computing the optimal partition

• optimal solution in O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)

9/12

Partitioning sparse integer sets [Ottaviano & Venturini 14]

lot of empty regions

Split the sequence into smaller blocks, choose the best encoding:
• for sparse blocks: Elias-Fano ; 2n + n

⌈
lg u

n
⌉
bits

• for dense blocks: plain bitset ; u bits
• for full blocks: lower bound + size is enough

Computing the optimal partition

• optimal solution in O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
9/12

Dynamic version & complexity recap [Pibiri & Venturini 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

→ WIP, no practical implementation available yet

Query complexity

• membership and successor in O(lg lg n)
• insertion and deletion in O(lg n / lg lg n)

10/12

Dynamic version & complexity recap [Pibiri & Venturini 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

→ WIP, no practical implementation available yet

Query complexity

• membership and successor in O(lg lg n)
• insertion and deletion in O(lg n / lg lg n)

10/12

Partitioning necklaces: a simple alternative to ranking

AAAA CCCC GGGG TTTT

• ranking saves lg k bits / k-mer but costs O
(
k2) / query

• partitioning typically saves 1
2 lg k bits / k-mer

11/12

Conclusion

Take-home messages

Using necklaces to represent k-mers
• preserves locality
• improves compression

Partitioned sparse sets
• fit in well with necklace locality
• can support dynamic operations

Future steps
• efficient implementation of the
dynamic partitions

• batch necklace computation
• batch rank computation
• subquadratic ranking?
• bound on the necklace distance

Thank you!

12/12

Take-home messages

Using necklaces to represent k-mers
• preserves locality
• improves compression

Partitioned sparse sets
• fit in well with necklace locality
• can support dynamic operations

Future steps
• efficient implementation of the
dynamic partitions

• batch necklace computation
• batch rank computation
• subquadratic ranking?
• bound on the necklace distance

Thank you!

12/12

Appendix

References i

Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). “Succinct k-mer sets using

subset rank queries on the spectral burrows-wheeler transform”. In: bioRxiv, pp. 2022–05.

Conway, Thomas C & Andrew J Bromage (2011). “Succinct data structures for assembling large

genomes”. In: Bioinformatics 27.4, pp. 479–486.

Elias, Peter (1974). “Efficient storage and retrieval by content and address of static files”. In:

Journal of the ACM (JACM) 21.2, pp. 246–260.

Fano, Robert Mario (1971). On the number of bits required to implement an associative

memory. Massachusetts Institute of Technology, Project MAC.

Ferragina, Paolo, Igor Nitto & Rossano Venturini (2011). “On optimally partitioning a text to

improve its compression”. In: Algorithmica 61, pp. 51–74.

References ii

Ottaviano, Giuseppe & Rossano Venturini (2014). “Partitioned elias-fano indexes”. In:

Proceedings of the 37th international ACM SIGIR conference on Research & development in

information retrieval, pp. 273–282.

Pibiri, Giulio Ermanno & Rossano Venturini (2017). “Dynamic elias-fano representation”. In:

28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

Sawada, Joe & Aaron Williams (2017). “Practical algorithms to rank necklaces, Lyndon words,

and de Bruijn sequences”. In: Journal of Discrete Algorithms 43, pp. 95–110.

A closer look at Elias-Fano encoding [Elias 74, Fano 71]

S = {2, 3, 251, 403, 406, 407, 995, 999} n = 8 u = 1000 l =
⌈
lg u

n
⌉
= 7 bits

000 0000010
000 0000011
001 1111011
011 0010011
011 0010110
011 0010111
111 1100011
111 1100111

hi li

n × l bits

hi + i

2n bits

(hi ≤ u
2l ≤ n)

Optimal partition as a shortest path [Ferragina et al. 11]

• V = J1,nK E =

{i < j ; i, j ∈ V}
• wi,j = cost to encode S [i, j]

1 2 … i … n

Computing the optimal partition

• optimal solution in O(|V |+ |E |) = O
(
n2) using dynamic programming

• (1 + ε)-approximation in O
(
n · 1

ε ln
1
ε

)
by sparsifying the graph

	Preserving k-mer locality
	Compressing sparse integer sets
	Partitioning sparse integer sets
	Conclusion
	Appendix

