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Plenty of compact data structures for storing k-mers
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Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]



MOTIVATION

Plenty of compact data structures for storing k-mers ...but most of them are static

Time (ps/query)

Nav. lower bound v Plain-split + EF-concat e  Sshash
Plain-matrix <« RRR-split ¢ Plain-subsetwt e  Bifrost
RRR-matrix Ao EF-split ¢  RRR-subsetwt e VARI
EF-matrix +  Plain-concat
Single positive Single negative Streaming positive
. . e
i 102 4
H 10% 4
107 4o
£ %
i 1014 € '
RS L® i
4 Ay b4 %
® 10° 4 i g
® ay® 3 o
10°4
100 . = b ¢ 10-1 H
10! 10! 10!

Memory (bits/kmer)

Memory (bits/kmer)

Memory (bits/kmer)
1/12

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]



REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]

* we can see k-mers as integers in [4]
A—-00 C—01 G—10 T—11

- since they're usually very sparse, we can
use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient

- index(ATAACGCCA ) = 49,556
- index( TAACGCCAT) = 198,227

— average distance of 4¥/3
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REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11] Limitations
- we can see k-mers as integers in [[4’“]] - it's not really dynamic
A—-00 C—01 G—-10 T—11 - it's not cache-efficient
- since they're usually very sparse, we can - index(ATAACGCCA ) = 49,556
use a sparse bitvector to store them + index(' TAACGCCAT) = 198,227

— average distance of 4¢/3
How can we improve this approach?
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WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer

- dynamic: support insertion and deletion after construction

- efficient queries:

CTGAAATG..
- membership CTGAA
- enumeration TGAAA
+Insertion GAAAT
- (deletion) AAATG
- locality-preserving: reduce cache misses
when querying consecutive k-mers batch queries
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PRESERVING K-MER LOCALITY




A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG
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A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<
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A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces

The necklace of z is its smallest cyclic rotation (z) = Umink 79
<<

-z — ((z), rotation index) is a bijective transformation

- necklaces of consecutive k-mers share long prefixes
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A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT . .

T Size of common prefix
AACGTCATCTCTCATTCTGTGAGTTCTTCCT between necklaces of successive k-mers (k= 31)
AACGTCATCTCTCATTCTGTGACTTCTTCCT — 30{ S*8™ ¢ T Ny ,’ som ¢ o
AACGTCATCTCTCATTCTGTGACATCTTCCT i : : -.E‘é 2
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT 10 -
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT 0 T
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

20 1
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RANKING NECKLACES TO IMPROVE COMPRESSION

k
The number of necklaces of size k on an alphabet with o letters is ~ 07

so only a fraction % of the universe is actually used

AAAA Cccc GGGG TTTT
#HHHHHHHHH- -,
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RANKING NECKLACES TO IMPROVE COMPRESSION

k
The number of necklaces of size k on an alphabet with o letters is ~ %

so only a fraction % of the universe is actually used

AAAA Cccc GGGG TTTT
#HHHHHHHHH- -,

R —

Ranking: given a necklace (z), find 7 s.t. (z) is the i-th smallest necklace of size k
We can compute the rank in O(k*) time [Sawada & Williams 17]
(Can we do better? for batch queries maybe?)

Tradeoff: better compression + locality vs O(k?) queries
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COMPRESSING SPARSE INTEGER SETS




COMPRESSING SPARSE INTEGER SETS WITH ELIAS-FANO ENCODING

[Elias 7%, Fano 71] {2,3,210, 216, 231, 265, 491, 499}
- separate the high bits and low bits : 1000 @00010
‘6)00 @00@11

- compress them with different methods
10111010010

slowly 10111011000
inueaﬁngi@llll@@lll
- nis the number of elements 11001001001

- u is the size of the universe 111 101911
e.g. u = 4% for k-mers ‘ 111 1110011

B ———

l

We choose the size of the low bits as [ = [lg q
n
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ALMOST OPTIMAL SPACE USAGE

Space usage of Elias-Fano

EF(n,u) =2n+n {lg Ew
n

e.g. for n = 10" and u = 43!, EF uses 31 bits / item
Information theoretic lower bound
lg <u> A nlge—l—nlgE
n n
~ 1.44n+ nlg 4
n

Note that the bound can get lower if we have

additional knowledge about the distribution.
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PARTITIONING SPARSE INTEGER SETS




PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

lot of empty regions
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PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks
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PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks, choose the best encoding:
+ for sparse blocks: Elias-Fano ; 2n + n[lg £| bits

- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough
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PARTITIONING SPARSE INTEGER SETS [OTTAVIANO & VENTURINI 14]

Split the sequence into smaller blocks, choose the best encoding:
+ for sparse blocks: Elias-Fano ; 2n + n[lg £| bits

- for dense blocks: plain bitset; u bits

- for full blocks: lower bound + size is enough
Computing the optimal partition

- optimal solution in O(n?) using dynamic programming

* (14 ¢)-approximation in O(n-11n1)
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DYNAMIC VERSION & COMPLEXITY RECAP [PIBIRI & VENTURINI 17]

[Pibiri & Venturini 17] presents an approach to make
the partitions dynamic using o(n) extra space

— WIP, no practical implementation available yet

Query complexity
- membership and successor in O(lglg n)
- insertion and deletion in O(lgn /lglgn)
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PARTITIONING NECKLACES: A SIMPLE ALTERNATIVE TO RANKING

AAAA Cccc GGGG TTTT
AHHHHHHHHH-- -
L 1 L 1 | — —_ u

- ranking saves lg k bits / k-mer but costs O(k?) / query
- partitioning typically saves 3 lg k bits / k-mer
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CONCLUSION



TAKE-HOME MESSAGES

Using necklaces to represent k-mers Future steps
- preserves locality - efficient implementation of the
- improves compression dynamic partitions
- batch necklace computation
Partitioned sparse sets - batch rank computation
- fit in well with necklace locality - subquadratic ranking?

- can support dynamic operations - bound on the necklace distance
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TAKE-HOME MESSAGES

Using necklaces to represent k-mers Future steps
- preserves locality - efficient implementation of the
- improves compression dynamic partitions
- batch necklace computation
Partitioned sparse sets - batch rank computation
- fit in well with necklace locality - subquadratic ranking?
- can support dynamic operations - bound on the necklace distance

Thank you!
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A CLOSER LOOK AT ELIAS-FANO ENCODING [ELIAS 74, FANO 71]

S = {2,3,251,403,406,407,995,999} n=8 w=1000 [= [lg%] =7 bits

‘% hi li
‘\\\\\\\\\\\000/0000010‘
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. ——011.0010011"

::::::::::::011001011071X ot
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(hi < 31 < n)




OPTIMAL PARTITION AS A SHORTEST PATH [FERRAGINA ET AL. 11]

- V=[L,n] E=
{i<j;ijeV}

- w;; = cost to encode S[¢, j]

Computing the optimal partition
- optimal solution in O(| V| + | E|) = O(n?) using dynamic programming
* (1+¢)-approximation in O(n - 11In1) by sparsifying the graph
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