FRACTIONAL HITTING SETS

EFFICIENT AND LIGHTWEIGHT GENOMIC DATA SKETCHING

Timothé Rouzé, <u>Igor Martayan</u>, Camille Marchet & Antoine Limasset September 5, 2023

BEFORE WE START

Antoine LIMASSET

Camille MARCHET

slides

OUTLINE

- · Reminders on sketching & minimizers
- Fractional Hitting Sets
- · SuperSampler, a sketching tool based on super-k-mers
- Experimental results
- Take home messages

BIONFORMATICIAN'S MOORE'S LAW

SKETCHING WITH MINHASH / FRACMINHASH

Bottom Minhash in MASH

sketch S smallest X₀

Scaled MinHash in Sourmash

sketch

APPROXIMATING JACCARD INDEX

FIXED-SIZE VS SCALED-SIZE SKETCHING

Fixed size sketch

Scaled size sketch

MINIMIZERS & SUPER-K-MERS

Minimizer

smallest *m*-mer of a *k*-mer according to some order (e.g. lexicographic)

width parameter: w = k - m + 1

MINIMIZERS & SUPER-K-MERS

Minimizer

smallest *m*-mer of a *k*-mer according to some order (e.g. lexicographic)

width parameter: w = k - m + 1

Super-k-mer

run of consecutive *k*-mers sharing the same minimizer

We use minimizers as a footprint for selecting super-k-mers

We want a sparse minimizer set

Density

$$d = \frac{\text{\#selected minimizers}}{\text{\#m-mers}}$$

We want a sparse minimizer set

Density

 $d = \frac{\text{\#selected minimizers}}{\text{\#m-mers}}$

We want a sparse minimizer set

Density

 $d = \frac{\text{\#selected minimizers}}{\text{\#}m\text{-mers}}$

We want a sparse minimizer set

Density

 $d = \frac{\text{\#selected minimizers}}{\text{\#}m\text{-mers}}$

low density \iff long super-k-mers

We want a sparse minimizer set

Density

 $d = \frac{\text{\#selected minimizers}}{\text{\#m-mers}}$

Optimal density: d = 1/w

When using a random order, the expected density is $\frac{2}{w+1}$

UNIVERSAL HITTING SETS & DENSITY LOWER BOUND

Universal Hitting Set (UHS)

set S of m-mers s.t. every run of w consecutive m-mers has \geq 1 element in S

e.g. Decycling sets (Pellow & al., 2022), Miniception (Zheng & al., 2020)

UNIVERSAL HITTING SETS & DENSITY LOWER BOUND

Universal Hitting Set (UHS)

set S of m-mers s.t. every run of w consecutive m-mers has \geq 1 element in S

e.g. Decycling sets (Pellow & al., 2022), Miniception (Zheng & al., 2020)

Density lower bound

In any UHS, the density is $\geqslant \frac{1.5}{w+1}$ (i.e. the density factor is \geqslant 1.5)

Universal Hitting Sets & Density Lower Bound

Universal Hitting Set (UHS)

set S of m-mers s.t. every run of w consecutive m-mers has \geq 1 element in S

e.g. Decycling sets (Pellow & al., 2022), Miniception (Zheng & al., 2020)

Density lower bound

In any UHS, the density is $\geqslant \frac{1.5}{w+1}$ (i.e. the density factor is \geqslant 1.5)

Can we cross this lower bound by relaxing some constraints?

FRACTIONAL HITTING SETS

Instead of covering every k-mer, we cover a fraction f of them

Fractional Hitting Set (FHS)

set S of m-mers s.t. every run of w consecutive m-mers has \geqslant 1 element in S with probability \geqslant f

FRACTIONAL HITTING SETS

Instead of covering every k-mer, we cover a fraction f of them

Fractional Hitting Set (FHS)

set *S* of *m*-mers s.t. every run of *w* consecutive *m*-mers has ≥ 1 element in *S* with probability $\geq f$

In practice, we select minimizers smaller than a certain threshold t

$$t = \left[1 - (1 - f)^{1/w}\right] \cdot 4^m$$

minimizers $\leq t$ are called small minimizers

Density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$,

$$d \leqslant \frac{2f}{w+1} + o(1/w)$$

Density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$,

$$d \leqslant \frac{2f}{w+1} + o(1/w)$$

 \oplus simple, consistent with known results for f = 1

Density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$,

$$d \leqslant \frac{2f}{w+1} + o(1/w)$$

- \oplus simple, consistent with known results for f = 1
- \ominus not very meaningful as $f \rightarrow 0$ (since most k-mers are not covered)

Density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$,

$$d \leqslant \frac{2f}{w+1} + o(1/w)$$

- \oplus simple, consistent with known results for f = 1
- \ominus not very meaningful as $f \to 0$ (since most k-mers are not covered) Is there a more meaningful metric?

RESTRICTED DENSITY UPPER BOUND FOR SMALL MINIMIZERS

Restricted density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$, when restricting to k-mers containing small minimizers,

$$d \leq 2 \cdot \frac{f + (1 - f) \ln(1 - f)}{f^2(w + 1)} + o(1/w)$$

RESTRICTED DENSITY UPPER BOUND FOR SMALL MINIMIZERS

Restricted density upper bound

Given a covering fraction f, assuming $m > (3 + \varepsilon) \log_4 w$, when restricting to k-mers containing small minimizers,

$$d \le 2 \cdot \frac{f + (1 - f) \ln(1 - f)}{f^2(w + 1)} + o(1/w)$$

- below the $\frac{1.5}{w+1}$ barrier for $f \leq 0.8$
- approaches optimal density as $f \rightarrow 0$

PROPORTION OF MAXIMAL SUPER-K-MERS

Proportion of maximal super-k-mers

The average proportion of maximal super-k-mers is

$$\left[\left(1 - \frac{1}{w} \right) \frac{f}{1+f} \right]^2 + \frac{1 - f(1 - 2/w)}{1+f}$$

PROPORTION OF MAXIMAL SUPER-K-MERS

Proportion of maximal super-k-mers

The average proportion of maximal super-k-mers is

$$\left[\left(1 - \frac{1}{w} \right) \frac{f}{1+f} \right]^2 + \frac{1 - f(1 - 2/w)}{1+f}$$

PROPORTION OF MAXIMAL SUPER-K-MERS

Proportion of maximal super-k-mers

The average proportion of maximal super-*k*-mers is

$$\left[\left(1 - \frac{1}{w} \right) \frac{f}{1+f} \right]^2 + \frac{1 - f(1 - 2/w)}{1+f}$$

How accurate is it in practice?

COMPARISON WITH EXPERIMENTAL RESULTS

COMBINING FHS WITH EXISTING UHS HEURISTICS

Instead of applying a threshold on minimizers, we can:

- 1. build a universal hitting set S (e.g. a decycling set)
- 2. sample elements from S (by hashing elements and applying a threshold)

SPACE USAGE IN PRACTICE

SUPERSAMPLER'S SKETCHES

SKETCH COMPARISON

EXPERIMENTAL RESULTS VS SOURMASH

PERFORMANCE COMPARISON ON DISSIMILAR DATA (REFSEQ)

Computational time

 $\approx 40 \times faster$

Disk usage

 \approx 15 \times lighter

RAM usage

 \approx 5× less RAM

PERFORMANCE COMPARISON ON SIMILAR DATA (SALMONELLAS)

Computational time

similar w/ low sampling, $\approx 2 \times$ faster w/ high sampling

Disk usage

 \approx 40 \times lighter

RAM usage

 \approx 5× less RAM

CONCLUSION

TAKE HOME MESSAGES

Fractional Hitting Sets:

- unify UHS and sketching problems
- · lead to lower density / longer super-k-mers
- · can benefit from existing UHS building techniques

Super-k-mers:

- provide a space-efficient representation
- speed-up genome sketching & comparison

paper

SuperSampler

DECYCLING SETS

Decycling set

set S of m-mers whose removal make the De Bruijn graph acyclic

- if at least one *m*-mer is in *S*, take it in your UHS
- otherwise, use a random order to select a minimizer

Pellow & al., 2022

DENSITY UPPER BOUND: SKETCH OF THE PROOF

Key property (from Zheng & al., 2020)

Assuming $m > (3 + \varepsilon) \log_{\sigma} w$, the probability of having duplicate m-mers in a k-mer is negligible

We consider two consecutive k-mers, the density is equal to the probability that they have different minimizers, which is the expectation of $\frac{\#\text{small boundary }m\text{-mers}}{\#\text{small }m\text{-mers}}$.

The In factor in the restricted density bound comes from a Taylor expansion.

SUPER-K-MERS' MARKOV CHAIN

- state i: small minimizer starts at i in the k-mer
- state \varnothing : no small minimizer in the k-mer